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Introduction

Over the last few years, the field of parallel imaging has revolutionized the field of rapid MR
imaging. The basic idea of parallel imaging is to use multiple receive coils to partially encode the
received signal, thereby allowing faster imaging [1-16]. This in turn has led to a near explosion of
receiver subsystem technology, with systems of up to 96 channels already in the field [17].

In this lecture we will discuss the application of these concepts to RF transmission, referred to
here as parallel transmission. The basic idea of using multiple transmit ports has been around for
several years. The first proposals focused on using optimized magnitude and phases for different
drive ports on a volume coil to achieve a controlled or homogeneous excitation profile [18-19]. More
recently, the application of parallel transmission to multidimensional RF pulses has been proposed
[20]. While the most common use of these pulses is to excite a localized region for uses such a
motion navigators [e.g. 21], these pulses have also been proposed as a way to compensate for
almost every significant problem in high field imaging, such as B1-inhomogeinety.

We begin with a simple mathematical description of the problem. If we assume we have a coil with
a homogeneous BL1 field, the excited profile can be described (omitting multiplicative constants for
simplicity) as:

M excite()_() = j Bl (t)eilz(t)idt [1]

where M. (X) is the 3D excited spatial profile resulting from the application of an RF pulse defined
by B.(t) applied during a gradient defined by

K(t) =—y j G(t)dt 2]

where G(t) is the gradient field (in vector form) as a function of time. K (t) is the resulting harmonic

modulation and X is the 3D spatial coordinate. This is analogous to the imaging problem, wherein the
object is given by the Fourier transform of the received signal:

M (%) = [ S(t)e* "t 3]

where in this case, S(t)is the received MR signal.

The focus of this talk is to investigate all forms of multiport or parallel excitation strategies. In this
case, we envision a setup where one effectively has an array of multiple coils, each with a unique
sensitivity pattern (which could be separate meshes or modes of a birdcage, for example), instead of
a single homogeneous coil for excitation. In general, we desire to use these different coils or meshes
in unison to excite a particular pattern in the object. In this case, the excited pattern is given by the
linear combination of the sensitivity weighted waveforms:



L TR
M excite ()_() = I |Z—1: CI ()_() B1,I (t)elk (t)xdt [4]

where C, (X) is the sensitivity of coil | where | =1...L for L coils. In this case, the determination of the

required B, fields for a given excitation pattern are made much more complex, since they are now

intrinsically linked to the spatial profiles of the individual coils. To date, there have been many
approaches used to determine the desired pulses.

General Multiport (Array) Excitation

In this most general case, the B, fields of the various coils can vary independently in time in each

coil. However, as will be discussed later, this requires extensive hardware modification to implement,
which has been unavailable until just a few years ago. For this reason, many groups have previously
focused on using fixed analog networks, normally to generate a homogeneous excitation at high
frequencies. These networks can be set up to provide a fixed magnitude variation, a fixed phase
variation or both to each coil or mesh in the array [19]. This can be described by

L o =
M excite ()_() = J; nICI (X) Bl (t)elk(t)xdt [5]

where n, is the weighting factor for a given coil in the array, which is fixed in time. In this case, the

same B, is transmitted in each channel of the array. One can implement a scheme such as this by

varying capacitors on different meshes of a birdcage coil to control the relative currents in the different
meshes [e.g. 18,19], or by using external feed networks [e.g. 22]. As expected, systems which can
vary both the phase and magnitude of these weighting factors perform better than those with fixed
values, even though a fixed network can provide gains compared to a normal 2-port feed birdcage or
TEM setup. In addition, as expected, those setups with more independent coils or meshes perform
better than those with fewer elements [19].

Time Varying Array Excitation

However, as shown initially by Katscher et al [20], these schemes do not exploit all of the available
degrees of freedom. In their seminal work, they proposed using different time varying B, pulses in

each coil of the array to excite a multidimensional profile in a reduced time. This idea, dubbed
Transmit SENSE, is based on the parallel imaging method SENSE [8]. As in the parallel imaging
method, a portion of the k-space trajectory of the RF pulse is skipped, which would normally result in
an aliased excitation pattern. However, by using different pulses in each coil of the array, the aliasing
can be canceled in the superposition of the different coil patterns. Since its initial presentation, this
basic idea has been successfully implemented by several groups [e.g. 23-24, plus a multitude of
abstracts from last year’'s ISMRM].

The primary problem in this method is the determination of the RF pulses to be excited in each coil
of the array. While several methods have been proposed [20,23,25-27], the basic idea of all is based



on solving a system of equations given by Equation 5 above for each location in the excitation space.
This is very similar to the generalized SENSE formulation used for non-Cartesian trajectories [11].
These will be discussed in detail during the talk. Another problem in methods such as this is the exact
determination of the coil sensitivities for use in the design of the RF pulses.

Another option which can potentially avoid this problem is to use a k-space based formulation [27].
In this case, as in the parallel imaging situation, the k-space trajectory is broken up into several
subsets. For example, a Cartesian EPI-like trajectory can be broken up into even and odd lines. The
total RF pulse can then be viewed as the sum of the pulses on these trajectories:

RFroa = RFgyen + RFogq (6]

Even

where RF.,, and RF,,, correspond to the various segments which make up the complete

multidimensional RF pulse. As in k-space parallel imaging method, we can express all of the
segments in terms of just one of them, in this case the even trajectory:

Even

L
RI:Total = RI:Even + Z nI RI:Even [7]

1=1
where n, gives the weights for this transformation. As in the parallel imaging situation, one can use an

autocalibrated approach, wherein the RF., and RF,,, portions are separately excited and fit to one

another to determine the correct weighting factors, thereby avoiding the need for quantitative coil
sensitivity maps. Again, more detailed descriptions of this method will be given during the lecture.

Hardware Requirements

The actual implementation of these modern parallel transmit concepts such as these requires
significant hardware modification compared to the normal set up. One of the most significant changes
is the requirement of separately controlled transmitters for each channel in the array. High power
transmitters are in general very expensive, and this cost has been one of the primary hindrances to
the widespread application of these ideas. Another significant limitation is the need for coil with
independent sensitivities in the array. This is normally achieved in receive-only arrays by using
preamplifiers with a high input impedance to block currents on the coil elements, thereby increasing
their isolation. This is not possible during transmission, so alternative methods for decoupling of the
coil is needed. A very interesting potential solution to both of these problems was proposed by Kurpad
et al [28]. Their basic idea is effectively to move small transmitters onto each coil element of the array.
In this way, one can generate a high impedance setup on the coil elements, which essentially mimics
the preamplifier in a receive array. An additional 15 dB of isolation has been obtained to date. The
most significant limitation in this type of setup is the relatively low power that can be generated on
each element. However, as the number of elements increases, this will become less and less of a
problem.

Potential Applications and Limitations

The potential application of these concepts are nearly endless. Besides shortening simple
multidimensional pulses, the most immediate application, which could have significant application, is
improving the excitation homogeneity at very high fields. This is sometimes referred to as B1-
shimming. Significant improvements in excitation homogeneity have already been observed [e.g. 24].



Besides the hardware limitations, another area which has yet to be fully explored is the impact on
SAR. While some initial simulation-based studies have shown relatively benign SAR performance
[e.g. 29], the development of a full SAR monitoring system is still needed. This will be particularly
challenging at high fields, where the observable B1 fields and the local heat-inducing electric fields
are potentially spatially separated.
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